syg

  • 4

    获得赞
  • 3

    发布的文章
  • 0

    答辩的项目

focal loss 解决样本不平衡必须的trick

目标检测 深度学习

最后更新 2020-05-11 10:49 阅读 6028

最后更新 2020-05-11 10:49

阅读 6028

目标检测 深度学习

Focal Loss for Dense Object Detection ICCV2017 

RBG和Kaiming大神的新作。

 论文目标 

      我们知道object detection的算法主要可以分为两大类:two-stage detector和one-stage detector。前者是指类似Faster RCNN,RFCN这样需要region proposal的检测算法,这类算法可以达到很高的准确率,但是速度较慢。虽然可以通过减少proposal的数量或降低输入图像的分辨率等方式达到提速,但是速度并没有质的提升。后者是指类似YOLO,SSD这样不需要region proposal,直接回归的检测算法,这类算法速度很快,但是准确率不如前者。作者提出focal loss的出发点也是希望one-stage detector可以达到two-stage detector的准确率,同时不影响原有的速度。 

核心思想 

既然有了出发点,那么就要找one-stage detector的准确率不如two-stage detector的原因,作者认为原因是:样本的类别不均衡导致的。我们知道在object detection领域,一张图像可能生成成千上万的candidate locations,但是其中只有很少一部分是包含object的,这就带来了类别不均衡。那么类别不均衡会带来什么后果呢?引用原文讲的两个后果:

 (1) training is inefficient as most locations are easy negatives that contribute no useful learning signal;

 (2) en masse, the easy negatives can overwhelm training and lead to degenerate models. 

        什么意思呢?负样本数量太大,占总的loss的大部分,而且多是容易分类的,因此使得模型的优化方向并不是我们所希望的那样。其实先前也有一些算法来处理类别不均衡的问题,比如OHEM(online hard example mining),OHEM的主要思想可以用原文的一句话概括:In OHEM each example is scored by its loss, non-maximum suppression (nms) is then applied, and a minibatch is constructed with the highest-loss examples。OHEM算法虽然增加了错分类样本的权重,但是OHEM算法忽略了容易分类的样本。 

       因此针对类别不均衡问题,作者提出一种新的损失函数:focal loss,这个损失函数是在标准交叉熵损失基础上修改得到的。这个函数可以通过减少易分类样本的权重,使得模型在训练时更专注于难分类的样本。为了证明focal loss的有效性,作者设计了一个dense detector:RetinaNet,并且在训练时采用focal loss训练。实验证明RetinaNet不仅可以达到one-stage detector的速度,也能有two-stage detector的准确率。

 这里介绍下focal loss的两个重要性质:

1、当一个样本被分错的时候,pt是很小的,那么调制因子(1-Pt)接近1,损失不被影响;当Pt→1,因子(1-Pt)接近0,那么分的比较好的(well-classified)样本的权值就被调低了。因此调制系数就趋于1,也就是说相比原来的loss是没有什么大的改变的。当pt趋于1的时候(此时分类正确而且是易分类样本),调制系数趋于0,也就是对于总的loss的贡献很小。

 2、当γ=0的时候,focal loss就是传统的交叉熵损失,当γ增加的时候,调制系数也会增加。 专注参数γ平滑地调节了易分样本调低权值的比例。γ增大能增强调制因子的影响,实验发现γ取2最好。直觉上来说,调制因子减少了易分样本的损失贡献,拓宽了样例接收到低损失的范围。当γ一定的时候,比如等于2,一样easy example(pt=0.9)的loss要比标准的交叉熵loss小100+倍,当pt=0.968时,要小1000+倍,但是对于hard example(pt < 0.5),loss最多小了4倍。这样的话hard example的权重相对就提升了很多。这样就增加了那些误分类的重要性 

focal loss的两个性质算是核心,其实就是用一个合适的函数去度量难分类和易分类样本对总的损失的贡献。

Conclusion 

作者将类别不平衡作为阻碍one-stage方法超过top-performing的two-stage方法的主要原因。为了解决这个问题,作者提出了focal loss,在交叉熵里面用一个调整项,为了将学习专注于hard examples上面,并且降低大量的easy negatives的权值。作者的方法简单高效。并且设计了一个全卷积的one-stage的方法来验证它的高效性。在具有挑战性的COCO数据集上面也达到了state-of-the-art的精度和运行时间。 

作者:逍遥王可爱 链接:https://zhuanlan.zhihu.com/p/49981234 来源:知乎  

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,转载请附上原文出处链接和本声明。
本文链接地址:https://www.flyai.com/article/447
讨论
500字
表情
发送
删除确认
是否删除该条评论?
取消 删除