风雨兼程

  • 4

    获得赞
  • 6

    发布的文章
  • 0

    答辩的项目

OpenCV图像处理---图像直方图均衡化

Python3

最后更新 2020-06-19 11:04 阅读 234

最后更新 2020-06-19 11:04

阅读 234

Python3

一、直方图均衡化介绍

简单地说,使得图像的像素值尽量分布均匀,而不是高低差落较大,这样的好处是,能够更好的观察图像的细节部分,形成鲜明的对比度。咱们接着往下看!

1.1 原始图像

image.png                        (原始图像十分的灰蒙,图中目标对比度也较低,不能很好地进行观察)

1.2 代码实践

# -*- coding:utf-8 -*-
# 导入cv库
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 导入原始图像,色彩空间为灰度图
src_img = cv2.imread('src_img.png', 0)
# 调用cv2.calcHist
 函数绘制直方图
# 每个参数的意思在上期文章已讲述,请回顾
img_hist = cv2.calcHist([src_img], [0], None, [256], [0, 256])

# 直方图均衡化,调用cv2.equalizeHist 函数实心
result_img = cv2.equalizeHist(src_img)
# 显示原始图像
cv2.imshow('src_img', src_img)  
# 显示均衡化后的图像
cv2.imshow('result_img', result_img)  
cv2.waitKey(0)


# 用蓝色绘制原始图像直方图
plt.plot(img_hist, color="b")
plt.show()

# 绘制均衡化后的直方图
plt.hist(result_img.ravel(), 256, [0, 256])
plt.show()

代码解读:代码中用到了cv2.equalizeHist 函数,该函数的作用是对目标图像进行均衡化,可以看到,该函数的参数只用到了一个,整个原始图像的灰度数据,因此该均衡化是对全局均衡化,当然,我们可以选择摸某一个区域进行均衡化。后面的代码主要是对原始图像和均衡化图像的直方图进行显示,针对原始图像,我们已经计算出了直方图,因此直接进行plt.plot(img_hist, color="b")显示,针对均衡化后的图像,由于我们并没有计算直方图,因此采用图像数据。ravel的方式进行显示。

1.3 效果演示

 1)均衡化后的图像

image.png(可以看到,均衡化后的图像比之前的图像在对比度上提升了很多,色彩变得充实了起来,便于我们进一步观察图像的某个目标)

2)原始图像直方图

image.png(可以看到,原始图像的直方图像素值分布不均匀,且像素值范围多集中在100-200区域,不能很好地表示图像细节,也就是为啥它代表的图像看起来不丰富,细节不清晰了。)

3)均衡化后的直方图

image.png(可以看到,均衡化后的图像较之前像素值分布较为均匀,像素值的范围几乎都分布了像素)

结语        今天的分享结束了,我们主要对直方图的均衡化进行了知识讲解和代码实践,均衡化主要是调用了opencv的函数实现,较为简单,但是,具体实际项目是,为了不对全局造成变化,仅仅对目标区域进行操作时,我们要进行ROI区域选择,特定性针对才能提高项目速度,此外,今天的代码使用的图像时是灰度图,大家可以使用彩色图做直方图均衡化,那样看起来会更加丰富且具有色彩空间感,代码与今天的也差不多,期待大家熟练今天的内容,用到以后的实际项目中。我们下期再见。

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,转载请附上原文出处链接和本声明。
本文链接地址:https://www.flyai.com/article/583
讨论
500字
表情
每日优质讨论奖励 20FAI
发送
每日优质讨论奖励 20FAI
删除确认
是否删除该条评论?
取消 删除