脑部MRI(磁共振)图像分割

脑部MRI(磁共振)图像分割

该数据图像来自癌症成像档案(TCIA),通过深度学习算法自动提取具有一定形状特征的低级别胶质瘤区域。 低级别胶质瘤根据世界卫生组织(WHO)制定的分级系统可定义为(WHO1~2级)属分化良好的胶质瘤,虽然这类肿瘤在生物上并不属于良性肿瘤,但是患者的预后相对较好。MRI医学影像分割在病患检测、病情分析等领域都具有较大的研究价值。
生活垃圾分类

生活垃圾分类

自今年7月1日起,上海市将正式实施 《上海市生活垃圾管理条例》。垃圾分类,看似是微不足道的“小事”,实则关系到13亿多人生活环境的改善,理应大力提倡。 垃圾识别分类数据集中包括class、cardboard、metal、paper、plastic、trash,共6个类别。 生活垃圾由于种类繁多,具体分类缺乏统一标准,大多人在实际操作时会“选择困难”,基于深度学习技术建立准确的分类模型,利用技术手段改善人居环境。
植物幼苗分类

植物幼苗分类

该数据集包括12种植物物种的幼苗。本次竞赛的任务是根据图片建立预测植物种类的精准模型。
120种狗狗品种分类赛

120种狗狗品种分类赛

Stanford Dogs数据集包含来自世界各地的120种犬种的图像。该数据集是使用ImageNet中的图像和注释构建的,用于细粒度图像分类的任务。它最初被收集用于细粒图像分类,这是一个具有挑战性的问题,因为某些犬种具有接近相同的特征或者颜色。
AI医学影像:小儿肺炎患者诊断

AI医学影像:小儿肺炎患者诊断

胸部X线影像(前-后)选自广州市广州妇女儿童医学中心一至五岁儿科患者。所有胸部X射线成像均作为患者常规临床护理的一部分进行。 有5,863个X射线图像(JPEG)和2个类别(肺炎/正常)。
ATEC-问题相似度计算练习赛(内置BERT)

ATEC-问题相似度计算练习赛(内置BERT)

ATEC-问题相似度计算是由蚂蚁金服主办的赛题,在智能客服业务场景中提升用户体验、高效问题匹配、减轻客服压力等方面具有重要的价值。 基于对问题相似度计算研究,FlyAI为优秀的算法研究者提供此类赛题并通过FlyAI训练框架内置Google BERT 预训练模型。以客服业务为切入点,与大家一起探讨在自然语言处理领域的研究价值、普惠金融领域的商业发展价值。 Google BERT简介:2018年谷歌AI团队新发布的BERT模型,在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩,包括将GLUE基准推至80.4%(绝对改进7.6%),MultiNLI准确度达到86.7% (绝对改进率5.6%)等。
搜狗新闻文本分类预测

搜狗新闻文本分类预测

该数据集来自若干新闻站点2012年6月—7月期间国内,国际,体育,社会,娱乐等18个频道的新闻数据。根据新闻正文内容分析新闻的类别
升级版MNIST手写数字识别练习赛

升级版MNIST手写数字识别练习赛

Fashion-MNIST是一个替代MNIST手写数字集的图像数据集。 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自10种类别的共7万个不同商品的正面图片。Fashion-MNIST的大小、格式和训练集/测试集划分与原始的MNIST完全一致。60000/10000的训练测试数据划分,28x28的灰度图片。
加载更多