简单

此类赛题相对简单,可更加熟练的掌握深度学习,高准确率的模型评分也会很轻易的达到。

练习比赛

脸部年龄判断

本数据集为脸龄判断数据集,共包含9779张不同人种的人类个体面部图片,个体年龄分布为1岁到110岁之间,共99个类别。为简化问题,将每10岁划为一个区间,使类别缩小到10类。
简单 视觉计算
图像识别
11202

练习比赛

仇恨言论识别

此数据集包含25000多条推文内容。仇恨言论识别任务:查看短文,并确定它是否为 0(包含仇恨言论),1(冒犯性的,但没有仇恨言论),2(一点也没有冒犯性)。

练习比赛

生活垃圾分类

自今年7月1日起,上海市将正式实施 《上海市生活垃圾管理条例》。垃圾分类,看似是微不足道的“小事”,实则关系到13亿多人生活环境的改善,理应大力提倡。 垃圾识别分类数据集中包括class、cardboard、metal、paper、plastic、trash,共6个类别。 生活垃圾由于种类繁多,具体分类缺乏统一标准,大多人在实际操作时会“选择困难”,基于深度学习技术建立准确的分类模型,利用技术手段改善人居环境。

练习比赛

ATEC-问题相似度计算练习赛(内置BERT)

ATEC-问题相似度计算是由蚂蚁金服主办的赛题,在智能客服业务场景中提升用户体验、高效问题匹配、减轻客服压力等方面具有重要的价值。 基于对问题相似度计算研究,FlyAI为优秀的算法研究者提供此类赛题并通过FlyAI训练框架内置Google BERT 预训练模型。以客服业务为切入点,与大家一起探讨在自然语言处理领域的研究价值、普惠金融领域的商业发展价值。 Google BERT简介:2018年谷歌AI团队新发布的BERT模型,在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩,包括将GLUE基准推至80.4%(绝对改进7.6%),MultiNLI准确度达到86.7% (绝对改进率5.6%)等。
简单 自然语言处理
语义相似度
4322

练习比赛

AI医学影像:小儿肺炎患者诊断

胸部X线影像(前-后)选自广州市广州妇女儿童医学中心一至五岁儿科患者。所有胸部X射线成像均作为患者常规临床护理的一部分进行。 有5,863个X射线图像(JPEG)和2个类别(肺炎/正常)。

实时奖金

中文微博的立场检测

奖金池 ¥ 5,000

本次立场检测任务旨在自动确定微博作者对某一话题赞成给定topic(FAVOR),反对给定topic(AGAINST),或者两者都不是(NONE)。注意到给定topic可能不在微博文本中。这意味着立场检测不同于传统的目标检测/部分情绪分析。

实时奖金

中文的命名实体识别

奖金池 ¥ 5,000

命名实体识别,英文简称NER,主要任务是识别文本中具有特定意义的实体,主要包括人名、地名、机构名称、专有的名词等,以及关于时间、数量、货币、比例数值等文字。
简单 自然语言处理
命名实体识别
6885

实时奖金

TensorFlow2.0 人民币面值识别

奖金池 ¥ 2,000

全网首个TensorFlow 2.0竞赛项目上线! 人民币面值识别是一个简单的图像分类任务,通过建立准确的分类模型识别出人民币面额。 第四套人民币是中国人民银行于1987年4月27日至1997年4月1日发行的一套货币,共有1角、2角、5角、1元、2元、5元、10元、50元、100元9种面额。 TensorFlow 2.0 将专注于简单性和易用性,具有以下更新: 1、使用 Keras 轻松构建模型 2、在任意平台上实现稳健模型部署 3、为研究提供强大的实验工具 4、简化 API 接口,删掉多余的和重复的 API

实时奖金

社交网站消息内容分类

奖金池 ¥ 2,500

此数据集包含超过10000条社交平台Twitter上的推文,其中包括对一些'着火'、'隔离'、'混乱'等关键词的搜索,判断推文内容是否涉及灾难性的事件(这里排除对一些文字、电影评论或者非灾难事件等开玩笑的内容)。

实时奖金

呼吸声音推断呼吸系统疾病

奖金池 ¥ 3,000

呼吸声音是呼吸系统是否健康的重要参考指标。例如,喘息声是患有哮喘或慢性阻塞性肺病(COPD)患者常见的现象。 呼吸声音数据集由葡萄牙和希腊的两个研究小组创建。它包括920个不同长度的注释录音,录音长度10到90秒,数据包括干净的呼吸音以及模拟真实生活条件的嘈杂录音。这些录音来自126名患者,患者遍及儿童、成人和老年人。
简单
语音
语音分类
2904

实时奖金

用户商场评价情感分析

奖金池 ¥ 1,000

此数据集涵盖了24 万家餐馆,54 万用户,440 万条评论/评分数据。每条数据包含用户对餐馆的四个维度的评分(总体,环境,口味,服务),评分为从1到5的整数。该数据集适合做推荐系统、情感/观点/评论 倾向性分析
简单 自然语言处理
情感分类树
5668

实时奖金

UrbanSound8K-城市音频分类

奖金池 ¥ 4,000

该数据集收录的城市声音包含10个声音类别、8732个声音文件(每个文件最长不超过4秒)。 环境声音分类是一个不断发展的研究领域,例如对导致城市噪声污染的声音研究。鉴于对环境,特别是城市环境声音进行分类的各种研究,我们应该使用哪种分类法,它是否能满足我们的研究需求等并没有明确的结论。通过本赛题建立准确的音频分类模型,希望给大家带来更多对音频分类方法上的思考与突破。
简单
语音
语音分类
2423

实时奖金

细胞图像分类-疟疾病诊断

奖金池 ¥ 3,000

通过检测包含疟疾的图像细胞帮助医生尽早确诊疟疾病患者并及时进行治疗。该数据集包含两个文件:感染/未感染,共有27,588张图片。

实时奖金

中文阅读理解练习赛

奖金池 ¥ 2,000

该数据集提供一个中文问题并列出与其有关联的句子描述,建立判断模型并从列出的所有句子中正确选择一个或多个具有相关联的句子作为答案. 数据格式为:提供的问题(第一列),问题的相对应句子(第二列),以及他们的答案注释(第三列);如果文档句子是问题的正确答案,则其注释将为1,否则其注释将为0。 所有数据集文件都以UTF-8编码。
简单 自然语言处理
文本相似度
2446

实时奖金

7种表情分类

奖金池 ¥ 1,000

本数据集是一个包含7种表情的图片数据集,表情分别为平静、愤怒、失落、恐惧等。原数据集中表情由10位日本女性学生提供,每个人分别提供若干张不同表情的照片。我们对数据集进行了翻转,明暗变化等数据增强处理,使得数据大小从213增加到了852。

实时奖金

今日头条新闻分类

奖金池 ¥ 2,000

今日头条中文新闻(文本)分类数据集由今日头条客户端提供,共计382688条数据,15个分类。 分类code:民生/文化/娱乐/体育/财经/房产/汽车/教育/科技/军事/旅游/国际/证券/农业/电竞

实时奖金

2005 VOC挑战赛

奖金池 ¥ 2,500

PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。该数据集取自TU-Darmstadt, Caltech, TU-Graz 和 UIUC等发布的数据集。在该数据集中每张图片中的物体都由人工标注,物体包含汽车,摩托车,自行车和人体四类。
简单 视觉计算
图像识别
3947

实时奖金

Quora-检测两个问题是否重复

奖金池 ¥ 3,000

此数据集是Quora网站公开的数据集,包含了40万条数据。每条数据由两个看起来相似的问题及问题是否重复的标签组成。该数据集可用来训练具有判断能力的NLP模型。
简单 自然语言处理
文本相似度
3422

实时奖金

美国点评网站Yelp评价预测赛

奖金池 ¥ 5,000

该数据集包含美国15万用户对18万家企业的100万条点评,涵盖超过140万个商业属性,包括营业时间,停车位,便利性和环境等等。每条数据包括企业名称,位置,属性和类别

实时奖金

62种交通信号标志识别

奖金池 ¥ 5,000

BelgiumTSC 是一个图像数据集,包含62种交通信号标志的照片。分类数量:62 图片数量:6,954 标注:种类编号

实时奖金

Caltech256 图像分类竞赛

奖金池 ¥ 4,000

Caltech-256 物品分类数据集由Caltech-101数据集演变而来,该数据集选自Google Image数据集,并手工去除了不符合其类别的图片。在该数据集中共有30,607张图片,256个图片类别,每个类别包括超过80张图片。

实时奖金

CIFAR100种图片分类练习赛

奖金池 ¥ 2,000

此数据集与CIFAR-10类似,不同之处在于它有100个类型,每类包含600个图像。每个类有500个训练图像和100个测试图像。CIFAR-100中的100个小类分为20个大类,每张图片包含其所属的小类和大类标签。

实时奖金

CIFAR-10 图片分类预测

奖金池 ¥ 1,000

CIFAR-10数据集是一组图像,通常用于训练机器学习和计算机视觉算法。它是机器学习研究中使用最广泛的数据集之一。 CIFAR-10数据集包含10个不同类别的60,000个32x32彩色图像。 10个不同的类别代表飞机,汽车,鸟类,猫,鹿,狗,青蛙,马,船和卡车。每个类别有6000张图片,该数据集共有5万张训练图片以及1万张测试图片

练习比赛

120种狗狗品种分类赛

Stanford Dogs数据集包含来自世界各地的120种犬种的图像。该数据集是使用ImageNet中的图像和注释构建的,用于细粒度图像分类的任务。它最初被收集用于细粒图像分类,这是一个具有挑战性的问题,因为某些犬种具有接近相同的特征或者颜色。

练习比赛

植物幼苗分类

该数据集包括12种植物物种的幼苗。本次竞赛的任务是根据图片建立预测植物种类的精准模型。