简单

此类赛题相对简单,可更加熟练的掌握深度学习,高准确率的模型评分也会很轻易的达到。

实时奖金

120种狗狗品种分类赛

奖金池 ¥ 3,000

Stanford Dogs数据集包含来自世界各地的120种犬种的图像。该数据集是使用ImageNet中的图像和注释构建的,用于细粒度图像分类的任务。它最初被收集用于细粒图像分类,这是一个具有挑战性的问题,因为某些犬种具有接近相同的特征或者颜色。

实时奖金

细胞图像分类-疟疾病诊断

奖金池 ¥ 3,000

通过检测包含疟疾的图像细胞帮助医生尽早确诊疟疾病患者并及时进行治疗。该数据集包含两个文件:感染/未感染,共有27,588张图片。

实时奖金

中文阅读理解练习赛

奖金池 ¥ 2,000

该数据集提供一个中文问题并列出与其有关联的句子描述,建立判断模型并从列出的所有句子中正确选择一个或多个具有相关联的句子作为答案. 数据格式为:提供的问题(第一列),问题的相对应句子(第二列),以及他们的答案注释(第三列);如果文档句子是问题的正确答案,则其注释将为1,否则其注释将为0。 所有数据集文件都以UTF-8编码。
简单 自然语言处理
文本相似度
459

实时奖金

ATEC-问题相似度计算练习赛(内置BERT)

奖金池 ¥ 4,000

ATEC-问题相似度计算是由蚂蚁金服主办的赛题,在智能客服业务场景中提升用户体验、高效问题匹配、减轻客服压力等方面具有重要的价值。 基于对问题相似度计算研究,FlyAI为优秀的算法研究者提供此类赛题并通过FlyAI训练框架内置Google BERT 预训练模型。以客服业务为切入点,与大家一起探讨在自然语言处理领域的研究价值、普惠金融领域的商业发展价值。 Google BERT简介:2018年谷歌AI团队新发布的BERT模型,在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩,包括将GLUE基准推至80.4%(绝对改进7.6%),MultiNLI准确度达到86.7% (绝对改进率5.6%)等。

实时奖金

AI医学影像:小儿肺炎患者诊断

奖金池 ¥ 10,000

胸部X线影像(前-后)选自广州市广州妇女儿童医学中心一至五岁儿科患者。所有胸部X射线成像均作为患者常规临床护理的一部分进行。 有5,863个X射线图像(JPEG)和2个类别(肺炎/正常)。

实时奖金

7种表情分类

奖金池 ¥ 1,000

本数据集是一个包含7种表情的图片数据集,表情分别为平静、愤怒、失落、恐惧等。原数据集中表情由10位日本女性学生提供,每个人分别提供若干张不同表情的照片。我们对数据集进行了翻转,明暗变化等数据增强处理,使得数据大小从213增加到了852。

实时奖金

今日头条新闻分类

奖金池 ¥ 2,000

今日头条中文新闻(文本)分类数据集由今日头条客户端提供,共计382688条数据,15个分类。 分类code:民生/文化/娱乐/体育/财经/房产/汽车/教育/科技/军事/旅游/国际/证券/农业/电竞

实时奖金

2005 VOC挑战赛

奖金池 ¥ 2,500

PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。该数据集取自TU-Darmstadt, Caltech, TU-Graz 和 UIUC等发布的数据集。在该数据集中每张图片中的物体都由人工标注,物体包含汽车,摩托车,自行车和人体四类。

实时奖金

Quora-检测两个问题是否重复

奖金池 ¥ 3,000

此数据集是Quora网站公开的数据集,包含了40万条数据。每条数据由两个看起来相似的问题及问题是否重复的标签组成。该数据集可用来训练具有判断能力的NLP模型。

实时奖金

用户商场评价情感分析

奖金池 ¥ 1,000

此数据集涵盖了24 万家餐馆,54 万用户,440 万条评论/评分数据。每条数据包含用户对餐馆的四个维度的评分(总体,环境,口味,服务),评分为从1到5的整数。该数据集适合做推荐系统、情感/观点/评论 倾向性分析

实时奖金

美国点评网站Yelp评价预测赛

奖金池 ¥ 12,000

该数据集包含美国15万用户对18万家企业的100万条点评,涵盖超过140万个商业属性,包括营业时间,停车位,便利性和环境等等。每条数据包括企业名称,位置,属性和类别

实时奖金

62种交通信号标志识别

奖金池 ¥ 5,000

BelgiumTSC 是一个图像数据集,包含62种交通信号标志的照片。分类数量:62 图片数量:6,954 标注:种类编号

实时奖金

Caltech256 图像分类竞赛

奖金池 ¥ 12,000

Caltech-256 物品分类数据集由Caltech-101数据集演变而来,该数据集选自Google Image数据集,并手工去除了不符合其类别的图片。在该数据集中共有30,607张图片,256个图片类别,每个类别包括超过80张图片。

实时奖金

CIFAR100种图片分类练习赛

奖金池 ¥ 2,000

此数据集与CIFAR-10类似,不同之处在于它有100个类型,每类包含600个图像。每个类有500个训练图像和100个测试图像。CIFAR-100中的100个小类分为20个大类,每张图片包含其所属的小类和大类标签。

实时奖金

CIFAR-10 图片分类预测

奖金池 ¥ 1,000

CIFAR-10数据集是一组图像,通常用于训练机器学习和计算机视觉算法。它是机器学习研究中使用最广泛的数据集之一。 CIFAR-10数据集包含10个不同类别的60,000个32x32彩色图像。 10个不同的类别代表飞机,汽车,鸟类,猫,鹿,狗,青蛙,马,船和卡车。每个类别有6000张图片,该数据集共有5万张训练图片以及1万张测试图片
简单 视觉计算
经典
图像
Keras
3173